Future Exploration of the Outer Planet Satellites: A Decadal Perspective

John Spencer • Southwest Research Institute
Glen Fountain • Applied Physics Laboratory
Caitlin Griffith • University of Arizona
Krishan Khurana • Univ. California Los Angeles
Chris McKay • NASA-Ames Research Center
Francis Nimmo • Univ. California Santa Cruz
Louise Prockter • Applied Physics Laboratory
Gerald Schubert • Univ. California Los Angeles
Tom Spilker • Jet Propulsion Laboratory
David Stevenson • Caltech
Elizabeth Turtle • Applied Physics Laboratory
Hunter Waite • Southwest Research Institute

Fall AGU Meeting, San Francisco
December 18 2009
The Playing Field

Numerous very diverse targets
Satellite Meetings

• Open session audio transcripts and presentations are available via http://www.spacepolicyonline.com and http://sites.nationalacademies.org/SSB/CurrentProjects/sb_052412

• Washington DC, August 24-26, 2009
• Irvine, CA, September 21-23, 2009
• Boulder, CO, April 14-16, 2010

• Weekly panel telecons throughout

• Multiple mission studies initiated...
Europa Orbiter

- Highest priority outer satellite mission in the 2002 Decadal Survey
- Extensive study since then has converged on a specific mission design, JEO, part of EJSM
- JEO cost ~$2.7B (FY07)
- We have requested an Independent Cost Estimate of this mission concept
Io Observer

- A recommended Mid-Sized mission in the 2002 Decadal Survey
- Multiple Io flybys from eccentric Jupiter orbit
 - Radiation can be minimized by high-inclination orbit
- Detailed study beginning at JPL, based on 2008 Discovery/SMEX Mission Capability Extension (DSMCE) study
Ganymede Orbiter

• A recommended Mid-Sized mission in the 2002 Decadal Survey
• Likely to be realized by the ESA Jupiter Ganymede Orbiter (JGO) component of EJSM
• However JGO is one of three missions competing for a single “L” class mission slot
• We recommend a study so the mission can potentially be competed under New Frontiers if JGO does not proceed to a new start
Titan Saturn System Mission (TSSM)

- 2008 Flagship study:
 - NASA-supplied Saturn/Titan orbiter
 - ESA-supplied balloon and lake lander, costed separately
 - Several Enceladus flybys
- Independent Cost Estimate required for recommendation by the Decadal Survey for the next decade
Titan In Situ Elements

• ESA-supplied TSSM in situ elements
 • Montgolfière balloon
 • Lake lander

• Can these elements be flown as stand-alone missions before the next Flagship?
 • Mongolfière requires high data rate for remote sensing of surface: difficult to support with direct-to-Earth communication
 • Considerable technology development
 • Lake Lander’s prime goal is chemistry: requires lower data rates, so direct-to-Earth communication is feasible
 • Also, likely to require less technology development

• Lake Lander thus chosen for detailed study by the Decadal Survey
 • Stand-alone mission, or
 • Element of Flagship
Enceladus

- Biggest game-changer in satellite science since the 2002 Decadal Survey
 - Active tectonics and tidal heating
 - Potential habitable zone with increasing evidence for liquid water
 - Ability to sample the PHZ directly
- Many potential mission architectures
 - Saturn Orbiter
 - Enceladus Orbiter
 - Lander
 - Sample Return
- These are being studied as part of a Rapid Mission Architecture study at JPL
 - Incorporate improved trajectory options relative to previous studies (Thursday talk by Nathan Strange)
 - Emphasize lower cost missions
- Follow-on full studies of promising architectures may follow
Uranian Satellites

- Not clones of the mid-sized Saturnian satellites!
- Only intact ice-giant satellite system
- Satellite science is being considered as part of a Uranus orbiter study
Neptune and Triton

- Neptune orbiter and flyby were discussed by the 2002 Decadal survey
 - Neptune orbiter: High priority but deferred
 - Neptune flyby: not highly rated
- Improved instrumentation and the addition of the KBO flyby (and possible continued deferrment of a Neptune Flagship) make the flyby worth reconsidering
- JPL Rapid Mission Architecture study nearing completion
 - Flybys optimized for Neptune, Triton, or KBO
 - Simple orbiter
 - Complex orbiters
- Follow-on full mission studies TBD
Existing Flagship Study
Decadal Focused Study
Decadal RMA Study
Satellite-Relevant White Paper Inventory: 1

<table>
<thead>
<tr>
<th>Subject</th>
<th>First Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Science</td>
<td></td>
</tr>
<tr>
<td>Exploration Strategy for the Outer Planets 2013-2022: Goals and Priorities</td>
<td>Bill McKinnon</td>
</tr>
<tr>
<td>Icy Satellite Processes in the Solar System: A plurality of worlds</td>
<td>Steve Vance</td>
</tr>
<tr>
<td>Small Bodies Community White Paper: The Small Satellites of the Solar System</td>
<td>Bonnie Buratti</td>
</tr>
<tr>
<td>Space Weathering Impact on Solar System Surfaces and Mission Science</td>
<td>John Cooper</td>
</tr>
<tr>
<td>Astrobiology Priorities for Planetary Science Flight Missions</td>
<td>Carl Pilcher</td>
</tr>
<tr>
<td>An Astrobiological Lens on Planetary System Science</td>
<td>Carl Pilcher</td>
</tr>
<tr>
<td>Planetary Science & Astrobiology: Cold habitats for life in the Solar system</td>
<td>Mark Skidmore</td>
</tr>
<tr>
<td>Astrobiology Research Priorities for the Outer Solar System</td>
<td>Dirk Schulze-Makuch</td>
</tr>
<tr>
<td>Science: Specific Targets</td>
<td></td>
</tr>
<tr>
<td>Future Io Exploration for 2013-2022 and Beyond, Part 1: Justification and Science Objectives</td>
<td>Dave Williams</td>
</tr>
<tr>
<td>Exploration of Europa</td>
<td>Cynthia Phillips</td>
</tr>
<tr>
<td>Ganymede science questions and future exploration</td>
<td>Geoff Collins</td>
</tr>
<tr>
<td>The Case for Enceladus Science</td>
<td>Terry Hurford</td>
</tr>
<tr>
<td>The Science of Titan and its Future Exploration</td>
<td>Jon Lunine</td>
</tr>
<tr>
<td>Saturn's Titan: A strict test for life's cosmic ubiquity</td>
<td>Jon Lunine</td>
</tr>
<tr>
<td>Titan's Greenhouse Effect and Climate</td>
<td>Conor Nixon</td>
</tr>
<tr>
<td>Prebiotic Atmospheric Chemistry on Titan</td>
<td>Roger Yelle</td>
</tr>
<tr>
<td>Titan’s unique attraction: it is an ideal destination for humans</td>
<td>Julian Nott</td>
</tr>
<tr>
<td>Astrobiological Research Priorities for Titan</td>
<td>Mark Allen</td>
</tr>
<tr>
<td>The Exploration of Neptune and Triton</td>
<td>Craig Agnor</td>
</tr>
<tr>
<td>Specific Missions</td>
<td></td>
</tr>
<tr>
<td>Limits of Terrestrial Life in Space</td>
<td>Andrew Pohorille</td>
</tr>
<tr>
<td>The Mars Hopper: Long Range Mobile Platform Powered by Martian In-Situ Resources</td>
<td>Steven Howe</td>
</tr>
<tr>
<td>SCIENCE OF THE EUROPA JUPITER SYSTEM MISSION</td>
<td>Pappalardo</td>
</tr>
<tr>
<td>Europa Jupiter System Mission</td>
<td>Karla Clark</td>
</tr>
<tr>
<td>RADIATION FACTS AND MITIGATION STRATEGIES FOR THE JEO MISSION</td>
<td>Tsun-Yee Yan</td>
</tr>
<tr>
<td>A budget phasing approach to Europa Jupiter System Mission Science</td>
<td>David E. Smith</td>
</tr>
<tr>
<td>Future Io Exploration for 2013 2022 and Beyond, Part 2: Recommendations for Missions</td>
<td>Dave Williams</td>
</tr>
<tr>
<td>Cassini-Huygens Solstice Mission</td>
<td>Linda Spilker</td>
</tr>
<tr>
<td>The Case for an Enceladus New Frontiers Mission</td>
<td>Terry Hurford</td>
</tr>
<tr>
<td>Enceladus Flyby Sample Return, LIFE (Life Investigation For Enceladus)</td>
<td>Peter Tsou</td>
</tr>
<tr>
<td>The Case for a Titan Geophysical Network Mission</td>
<td>Ralph Lorenz</td>
</tr>
<tr>
<td>Future in situ balloon exploration of Titan’s atmosphere and surface</td>
<td>Athena Coustenis</td>
</tr>
<tr>
<td>Advanced Titan Balloon Design Concepts</td>
<td>Julian Nott</td>
</tr>
<tr>
<td>Titan Lake Probe</td>
<td>Hunter Waite</td>
</tr>
<tr>
<td>Heavier Than Air Vehicles For Titan Exploration</td>
<td>Lawrence Lemke</td>
</tr>
<tr>
<td>The Case for a Uranus Orbiter</td>
<td>Mark Hofstadter</td>
</tr>
<tr>
<td>Triton science with Argo - A Voyage through the Outer Solar System</td>
<td>Candy Hansen</td>
</tr>
</tbody>
</table>
Satellite-Relevant White Paper Inventory: 2

<table>
<thead>
<tr>
<th>Subject</th>
<th>First Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telescopes / Near-Earth Observations</td>
<td></td>
</tr>
<tr>
<td>A dedicated space observatory for time-domain Solar System science</td>
<td>Mike Wong</td>
</tr>
<tr>
<td>Study of Planetary Systems and Solar System Objects with JWST</td>
<td>George Sonneborn</td>
</tr>
<tr>
<td>SOFIA (Stratospheric Observatory for Infrared Astronomy) and Planetary Science</td>
<td>Dana Backman</td>
</tr>
<tr>
<td>The NASA Infrared Telescope Facility</td>
<td>Alan Tokunaga</td>
</tr>
<tr>
<td>Stratospheric Balloon Missions for Planetary Science</td>
<td>Karl Hibbitts</td>
</tr>
<tr>
<td>Balloon-Borne Telescopes for Planetary Science: Imaging and Photometry</td>
<td>Eliot Young</td>
</tr>
<tr>
<td>Laboratory Studies</td>
<td></td>
</tr>
<tr>
<td>Recommended Laboratory Studies in Support of Planetary Science</td>
<td>Brad Dalton</td>
</tr>
<tr>
<td>Laboratory Studies in Support of Planetary Surface Composition Investigations</td>
<td>S. W. Ruff</td>
</tr>
<tr>
<td>Laboratory Spectroscopy to Support Remote Sensing of Atmospheric Composition</td>
<td>Linda R. Brown</td>
</tr>
<tr>
<td>Recommended Laboratory Studies in Support of Planetary Science: Surface Chemistry of Icy Bodies</td>
<td>Robert Hodyss</td>
</tr>
<tr>
<td>Laboratory Studies in Support of Planetary Geophysics</td>
<td>Julie Castillo-Rogez</td>
</tr>
<tr>
<td>Laboratory Studies for Planetary Sciences</td>
<td>Murthy Gudipati_WGLA</td>
</tr>
<tr>
<td>Mission Technology</td>
<td></td>
</tr>
<tr>
<td>Thermal Protection System Technologies for Future Sample Return Missions</td>
<td>Ethiraj Venkatapathy</td>
</tr>
<tr>
<td>Thermal Protection System Technologies for Enabling Future Mars/Titan Science Missions</td>
<td>Ethiraj Venkatapathy</td>
</tr>
<tr>
<td>Thermal Protection System Sensors</td>
<td>Edward R. Martinez</td>
</tr>
<tr>
<td>Technologies for Outer Planet Missions: A Companion to the Outer Planet Assessment Group (OPAG) Strategic Exploration White Paper</td>
<td>Pat Beuchamp</td>
</tr>
<tr>
<td>In-Situ Mass Spectrometry of Atmosphereless Planetary Objects</td>
<td>Eberhardt Grun</td>
</tr>
<tr>
<td>The Importance of Utilizing and Developing Radioisotope Electric Propulsion for Missions Beyond Saturn</td>
<td>Mohammed Omair Khan</td>
</tr>
<tr>
<td>New Opportunities for Outer Solar System Science using Radioisotope Electric Propulsion</td>
<td>Robert Noble</td>
</tr>
<tr>
<td>Onboard Science Data Analysis: Implications for Future Missions</td>
<td>David Thompson</td>
</tr>
<tr>
<td>Planetary Protection for Planetary Science and Exploration</td>
<td>John Rummel</td>
</tr>
<tr>
<td>Radio Science Investigations of Planetary Atmospheres, Interiors, Surfaces, Rings, and Solar and Fundamental Physics</td>
<td>Sami Asmar</td>
</tr>
<tr>
<td>Electromagnetic Sounding of Solid Planets and Satellites</td>
<td>Bob Grimm</td>
</tr>
<tr>
<td>Future Plans for the Deep Space Network (DSN)</td>
<td>Barry Geldzahler</td>
</tr>
<tr>
<td>A Survey of the Technologies Necessary for the Next Decade of Small Body and Planetary Exploration</td>
<td>J. Edmund Riedel</td>
</tr>
<tr>
<td>Research, Analysis, Archiving</td>
<td></td>
</tr>
<tr>
<td>Data Management, Preservation and the Future of PDS</td>
<td>Reta Beebe</td>
</tr>
<tr>
<td>Astrodynamics Research and Analysis Funding</td>
<td>Nathan Strange</td>
</tr>
<tr>
<td>The Importance Of A Planetary Cartography Program: Status and Recommendations for NASA 2013-2023</td>
<td>Jeff Johnson</td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>ROSI - Return on Science Investment</td>
<td>Robert Schingler</td>
</tr>
<tr>
<td>Sociological Considerations for the Success of Unmanned Planetary Exploration Missions</td>
<td>Janet Vertesi</td>
</tr>
</tbody>
</table>
OPAG White Papers

• Recommendations:
 • The Decadal Survey should explore the possibilities for a program structure/categorization that could allow ‘small flagship’ class missions to be considered
 • Endorses the prioritization by NASA of the Jupiter Europa Orbiter (JEO) as the next Outer Planets Flagship and as part of the Europa Jupiter System Mission (EJSM) with ESA.
 • Strongly endorses approval by NASA of the Cassini Solstice Mission
 • Advocates the need for a focused technology program for the next Outer Planet Flagship Mission, which should be to Titan and Enceladus, in order to be ready for a launch in the mid-2020s
 • New Frontiers class missions that should be considered in the interim include (not in priority order) a shallow Saturn probe, an Io observer, a Titan in-situ explorer or probe, a Neptune/Triton/KBO flyby, Uranus Orbiter
OPAG White Papers

Beauchamp et al: *Technologies for Outer Planet Missions*.

Recommendations:

<table>
<thead>
<tr>
<th>Technology Development</th>
<th>Missions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Titan Orbiter In Situ Sampler</td>
</tr>
<tr>
<td>Power</td>
<td></td>
</tr>
<tr>
<td>RPS</td>
<td>E</td>
</tr>
<tr>
<td>Low intensity, low temperature solar arrays</td>
<td></td>
</tr>
<tr>
<td>Transportation</td>
<td></td>
</tr>
<tr>
<td>Electric propulsion</td>
<td>e</td>
</tr>
<tr>
<td>Aerocapture</td>
<td>E</td>
</tr>
<tr>
<td>Communications</td>
<td></td>
</tr>
<tr>
<td>Expanded Ka capability</td>
<td>e</td>
</tr>
<tr>
<td>Improved proximity links</td>
<td>e</td>
</tr>
<tr>
<td>Improved UHF systems</td>
<td>e</td>
</tr>
<tr>
<td>Planetary protection measures</td>
<td>e</td>
</tr>
<tr>
<td>Mobility and Landers</td>
<td>E</td>
</tr>
<tr>
<td>Autonomy</td>
<td>e</td>
</tr>
<tr>
<td>Extreme environments</td>
<td>e</td>
</tr>
<tr>
<td>Entry systems (includes TPS)</td>
<td>e</td>
</tr>
<tr>
<td>Planetary probe S/C technologies</td>
<td></td>
</tr>
<tr>
<td>In situ sensing of surface and atmospheres</td>
<td>E</td>
</tr>
<tr>
<td>Components and miniaturization</td>
<td>E</td>
</tr>
<tr>
<td>Remote sensing</td>
<td>e</td>
</tr>
</tbody>
</table>
Selected White Paper Findings

Missions and Science

- Outer planets program with small flagships?
- Include outer small satellite flybys in missions when possible
- Europa lander needed for astrobiology
- New Frontiers mission to Enceladus might be solar powered
- Enceladus sample return - Organics captured by Stardust technology
- Importance of astrodynamics for enabling missions e.g. to Enceladus
- Titan geophysical network
- Titan aircraft- some of the advantages of balloon, but steerable
- Life in hydrocarbons- plausible?
- Titan greenhouse as an analog for Earth greenhouse
- Uranus orbiter- possibly doable under New Frontiers on solar power?
- Good Triton science from a flyby
Some White Paper Findings

Near-Earth observations

• Importance of Thirty Meter Telescope and other giant telescopes for outer satellite science
• UV space telescope for Io and Europa observations
• Small telescopes for monitoring Io
• More NASA time on 8-meter telescopes
• IRTF capability needs to be maintained, in the absence of a larger dedicated planetary telescope
• SOFIA- Valuable for Titan, but also Io, stellar occultations
• Balloons- working group, balloon-borne observatory. Satellite spectroscopy in the UV (if we can get down to 200 nm) and some near-IR wavelengths obscured from the ground
• Space telescope for temporal monitoring- useful for Io and Titan
• JWST- can track moving target

Lab work

• Importance of lab work, need for increased support
• Planetary surface simulators
• Instrument development funded element NASA of strategic plan?
• Need to invest in infrastructure, train new people
• Lab work is slow and therefore expensive and can thus have trouble competing in current funding programs
• Encourage archiving of lab results in the PDS
Some White Paper Findings

Technology
- Need for a focused long-term technology program
- Radioisotope electric propulsion
- Entry technology, including thermal protection. Research into new materials and maintenance of facilities
- Ka-band improvements
- Spacecraft autonomy: data mining and autonomous acquisition
- Planetary protection- research into less invasive techniques for sterilizing spacecraft

Research Data Analysis and Archiving
- PDS needs to be able to keep up with increasing volume and complexity of data sets
- Need for making archived data user-friendly, e.g. archiving in physical units and high-level cartographic products

Other
- Importance of high-value, high-risk missions- something like New Millennium
- Importance of team member interactions and management structure in the effectiveness of a mission, and how these might be improved
- Concerns about ITAR
Specific Infrastructure Concerns

• 238Pu supply
 • Essential for ambitious outer planet satellite program

• Deep Space Network
 • Current DSN plan:
 • Possible retirement of 70-m antennas, construction of new 34-m antennas, by early 2020s
 • Transition from X-band to Ka-band as primary wavelength for communications
 • Need to maintain X-band for time-critical radio science, contingency communications